
art 3

Kyle J. Knoepfel
art stakeholders meeting
31 May 2018

• “art 3” means the first released version of art with the major number 3 (e.g.
3.00.00). It does not refer to all versions with the major number 3.

• This talk is an introduction to art 3.
• It does not discuss all aspects of art 3.
• It is not intended to be formal documentation for art 3.
• It may contain mistakes.
• Some interface may yet change (not a lot though).

Disclaimer

5/31/18 K. J. Knoepfel | art stakeholders meeting2

• Opening remarks
• art transitions and path processing

– Consequences
• art 3 introduction

– Command-line invocation
– Guarantees and limitations
– Kinds of modules

• Illustrations
– Module interface
– Services

• General breaking changes to legacy modules and to legacy services
• Guidance moving to art 3
• Next steps/down the road

Outline

5/31/18 K. J. Knoepfel | art stakeholders meeting3

September 2017 – first art MT forum meeting

5/31/18 K. J. Knoepfel | art stakeholders meeting4

September 2017 – first art MT forum meeting

5/31/18 K. J. Knoepfel | art stakeholders meeting5

September 2017 – first art MT forum meeting

5/31/18 K. J. Knoepfel | art stakeholders meeting6

Nine months later, these principles have held:
• The design is based on fundamental principles, not limitations of external

libraries.
• There are known inefficiencies that have been tolerated for the sake of

simplicity and to avoid premature optimization. They can be improved
upon in future releases.

• Except for issues directly coupled to MT execution, legacy modules and
configurations will continue to work without modification. Typically, only
rebuilding will be required.

Allowed transitions

5/31/18 K. J. Knoepfel | art stakeholders meeting7

Run
(fragment)

SubRun
(fragment)

EventStart

Stop

• art is designed to process a hierarchy of data-containment levels:
– 𝑹𝒖𝒏	 ⊃ 𝑺𝒖𝒃𝑹𝒖𝒏	 ⊃ 𝑬𝒗𝒆𝒏𝒕

• art users expect the framework to respect this hierarchy
• The allowed transitions by the framework are thus:

These transitions are implicit to the user.

Processing a data-containment level (e.g. Event)

5/31/18 K. J. Knoepfel | art stakeholders meeting8

• The order in which modules are executed for a Run, SubRun, or Event is
determined by the path declarations in the configuration file.

physics: {

producers: {
 makeHits: {...}
 makeShowers: {...}

produceG4Steps: {...}
 }

analyzers: {
 plotHits: {...}
 }

hitPath: [makeHits, makeShowers]
geomPath: [produceG4Steps]
analyzePath: [plotHits]

}
Path declarations

Module declarations

Processing a data-containment level (e.g. Event)

5/31/18 K. J. Knoepfel | art stakeholders meeting9

• The order in which modules are executed for a Run, SubRun, or Event is
determined by the path declarations in the configuration file.

physics: {

producers: {
 makeHits: {...}
 makeShowers: {...}

produceG4Steps: {...}
 }

analyzers: {
 plotHits: {...}
 }

hitPath: [makeHits, makeShowers]
geomPath: [produceG4Steps]
analyzePath: [plotHits]

}

Trigger path
Trigger path
End path

Processing a data-containment level (e.g. Event)

5/31/18 K. J. Knoepfel | art stakeholders meeting10

• The order in which modules are executed for a Run, SubRun, or Event is
determined by the path declarations in the configuration file.

physics: {

producers: {
 makeHits: {...}
 makeShowers: {...}

produceG4Steps: {...}
 }

analyzers: {
 plotHits: {...}
 }

hitPath: [makeHits, makeShowers]
geomPath: [produceG4Steps]
analyzePath: [plotHits]

}

Trigger path
Trigger path
End path

• The order in which trigger
paths are executed is
unspecified (current art).

• In MT art trigger paths will be
executed simultaneously.

• Modules in a trigger path are
executed in the order specified.

• End paths are always
processed after all trigger paths.

• A module is executed once per
event.

Processing a data-containment level (e.g. Event)

5/31/18 K. J. Knoepfel | art stakeholders meeting11

• The order in which modules are executed for a Run, SubRun, or Event is
determined by the path declarations in the configuration file.

physics: {

producers: {
 makeHits: {...}
 makeShowers: {...}

produceG4Steps: {...}
 }

analyzers: {
 plotHits: {...}
 }

hitPath: [makeHits, makeShowers]
geomPath: [produceG4Steps]
analyzePath: [plotHits]

}

Trigger path
Trigger path
End path

• The order in which trigger
paths are executed is
unspecified (current art).

• In MT art trigger paths will be
executed simultaneously.

• Modules in a trigger path are
executed in the order specified.

• End paths are always
processed after all trigger paths.

• A module is executed once per
event.Heeding these facts is essential for successful use of art 3.

• Modules on one trigger path may not consume products created by modules that
are not on that same path.

Consequences of art’s guarantees

5/31/18 K. J. Knoepfel | art stakeholders meeting12

• Modules on one trigger path may not consume products created by modules that
are not on that same path.

• The following is a configuration error (heuristically):

Consequences of art’s guarantees

5/31/18 K. J. Knoepfel | art stakeholders meeting13

physics: {
producers: {

 p1: { produces: ["int", ""] }
 p2: { consumes: ["int", "p1::current_process"] }
 }
 tp1: [p1]
tp2: [p2]

}

• Modules on one trigger path may not consume products created by modules that
are not on that same path.

• The following is also a configuration error (heuristically):

Consequences of art’s guarantees

5/31/18 K. J. Knoepfel | art stakeholders meeting14

physics: {
producers: {

 p1: { produces: ["int", ""] }
 p2: { produces: ["int", "instanceName"] }

readThenMake: {
consumesMany: ["int"] // calls getMany

}
 }
tp1: [p1, readThenMake]
tp2: [p2, readThenMake]

}

• Modules on one trigger path may not consume products created by modules that
are not on that same path.

• The following is also a configuration error (heuristically):

Consequences of art’s guarantees

5/31/18 K. J. Knoepfel | art stakeholders meeting15

physics: {
producers: {

 p1: { produces: ["int", ""] }
 p2: { produces: ["int", "instanceName"] }

readThenMake: {
consumesMany: ["int"] // calls getMany

}
 }
tp1: [p1, readThenMake]
tp2: [p2, readThenMake]

}

art 3 catches these errors if you use the consumes interface.
Module readThenMake on paths tp1, tp2 depends on

Module p2 on path tp2

art 3

5/31/18 K. J. Knoepfel | art stakeholders meeting16

• art 3 supports concurrent processing of events.
– The number of events to process concurrently is specified by the number of schedules
– The user can optionally specify the number of threads.

• The user opts in to concurrent processing.

Multi-threaded event-processing

5/31/18 K. J. Knoepfel | art stakeholders meeting17

• art 3 supports concurrent processing of events.
– The number of events to process concurrently is specified by the number of schedules
– The user can optionally specify the number of threads.

• The user opts in to concurrent processing.

• In a grid environment, number of threads is limited to the number of CPUs
configured for the HTCondor slot (art adjusts the number of threads).

Multi-threaded event-processing

5/31/18 K. J. Knoepfel | art stakeholders meeting18

(nSch, nThr) Command

(1, 1) art -c <config> …
(1, 1) art -c <config> -j 1 …
(4, 4) art -c <config> -j 4 …

(nproc, nproc) art -c <config> -j 0 …
(1, 4) art -c <config> --nschedules 1 --nthreads 4 …

• Processing of an event happens on one and only one schedule.
• For a given trigger path, modules are processed in the order specified.
• A module shared among paths will be processed only once per event.
• Product insertion into the event is thread-safe.
• Product retrieval from the event is thread-safe.
• Provenance retrieval from the event is thread-safe.
• All modules and services provided by art are thread-safe.

– For TFileService, the user is required to specify additional serialization.

art 3 guarantees

5/31/18 K. J. Knoepfel | art stakeholders meeting19

• Only events within the same SubRun are processed concurrently.
• Analyzers and output modules do not run concurrently.
• MixFilter modules are legacy modules.
• Secondary input-file reading is allowed only for 1 schedule and 1 thread.
• TFileService file-switching is allowed only for 1 schedule and 1 thread.

art 3 limitations—Primum non nocere (first, to do no harm)

5/31/18 K. J. Knoepfel | art stakeholders meeting20

• art guarantees that any currently-existing modules (to within some interface
changes) will be usable in a multi-threaded execution of art.
– No multi-threading benefits will be realized with such “legacy” modules

• To take advantage of art’s multi-threading capabilities, users will need to choose
the kind of module they use:

– Shared module: sees all events—calls can be serialized or asynchronous.

– Replicated module: for a configured module, one copy of that module is created per
schedule—each module copy sees one event at a time. Use if moving to a concurrent,
shared module is not feasible.

Kinds of modules in art 3

5/31/18 K. J. Knoepfel | art stakeholders meeting21

Time structure for calling modules
Single schedule (current art)

5/31/18 K. J. Knoepfel | art stakeholders meeting22

1 2 3
Begin
SR1

End
SR1

5/31/18 K. J. Knoepfel | art stakeholders meeting23

SubRun Event

m1

m2

m3

1 2 3
Begin
SR1

End
SR1Time structure for calling modules

Single schedule (current art)

Shared modules
Modules shared across schedules

5/31/18 K. J. Knoepfel | art stakeholders meeting24

5/31/18 K. J. Knoepfel | art stakeholders meeting25

Time structure for calling modules
Multiple schedules (art 3.0)

1 4

2 3

Begin
SR1

End
SR1

5/31/18 K. J. Knoepfel | art stakeholders meeting26

SubRun
Event

Event

Time structure for calling modules
Multiple schedules (art 3.0)

1 4

2 3

Begin
SR1

End
SR1

5/31/18 K. J. Knoepfel | art stakeholders meeting27

SubRun
Event

Event

Time structure for calling modules
Multiple schedules (art 3.0)

1 4

2 3

Begin
SR1

End
SR1

Data races are now possible.

5/31/18 K. J. Knoepfel | art stakeholders meeting28

SubRun
Event

Event

Time structure for calling modules
Multiple schedules (art 3.0)

1 4

2 3

Begin
SR1

End
SR1

If the state of one of the
modules is updated when
simultaneously processing
two events, there can be
a data race.

What are some ways
to handle this?

1

2

Use a “legacy” module

5/31/18 K. J. Knoepfel | art stakeholders meeting29

class HistMaker : public art::EDProducer {
public:
explicit HistMaker(Parameters const& p) : EDProducer{p}

 {}

 void produce(Event& e) override {} // Called serially wrt. all
// serialized modules

};

• Legacy modules imply maximum serialization.
– Legacy modules cannot be run in parallel with any other legacy modules or any serialized

shared modules.
• With art 3, any new modules should not be legacy modules.
• The better solution is to use a SharedModule, which can be serialized only wrt

itself.

Use a shared module

5/31/18 K. J. Knoepfel | art stakeholders meeting30

class HistMaker : public art::SharedProducer {
public:
explicit HistMaker(Parameters const& p) : SharedProducer{p}

 {
serialize<InEvent>(); // Declaration to process

// one event at a time.
}

 void produce(Event&) override {} // Called serially wrt. itself
};

• But there can be other data race problems.

5/31/18 K. J. Knoepfel | art stakeholders meeting31

SubRun
Event

Event

Time structure for calling modules
Multiple schedules (art 3.0)

1 4

2 3

Begin
SR1

End
SR1

If two modules are processing
different events at the same
time, but they are using a
common resource, there
can be a data race.1

2 How do we avoid such a data
race?

class Fitter : public art::shared::Producer {
public:
explicit Fitter(Parameters const& p)

 {
serialize<Event>("TCollection"); // Declare the common resource

 }

// Called serially wrt. other modules that use TCollection
 void produce(Event& e) override {}
};

Serialized module due to shared resource

5/31/18 K. J. Knoepfel | art stakeholders meeting32

Suppose you want to call TCollection::(Set|Get)CurrentCollection
First step: please don’t. This is only illustrating a thread-unsafe interface.

class Fitter : public art::SharedProducer {
public:
explicit Fitter(Parameters const& p) : SharedProducer{p}

 {
serialize<InEvent>("TCollection"); // Declare the common resource

 }

// Called serially wrt. other modules that use TCollection
 void produce(Event& e) override {}
};

Serialized module due to shared resource

5/31/18 K. J. Knoepfel | art stakeholders meeting33

• We are working on a way to standardize the arguments to serialize.

If you can guarantee no data races…

5/31/18 K. J. Knoepfel | art stakeholders meeting34

class HitMaker : public art::SharedProducer {
public:
explicit HitMaker(Parameters const& p) : SharedProducer{p}

 {
async<InEvent>();

 }

 void produce(Event& e) override {} // Called asynchronously
};

5/31/18 K. J. Knoepfel | art stakeholders meeting35

Replicated modules
One module per schedule

5/31/18 K. J. Knoepfel | art stakeholders meeting36

Replicated modules
One module per schedule

• Sometimes the easiest way to gain multi-threading benefits is to replicate modules
across schedules—avoids data races from sharing a module.

5/31/18 K. J. Knoepfel | art stakeholders meeting37

Time structure for calling modules
Multiple schedules (art 3.0)

1 4

2 3

Begin
SR1

End
SR1

5/31/18 K. J. Knoepfel | art stakeholders meeting38

Time structure for calling modules
Multiple schedules (art 3.0)

1 4

2 3

Begin
SR1

End
SR1

SubRun
Event

Event

Multiple copies of configured
module m2 avoids data-races
wrt. m2 data members.

5/31/18 K. J. Knoepfel | art stakeholders meeting39

Time structure for calling modules
Multiple schedules (art 3.0)

1 4

2 3

Begin
SR1

End
SR1

SubRun
Event

Event

Multiple copies of configured
module m2 avoids data-races
wrt. m2 data members.

Consequence: each module
copy does not see all events.

Replicated producer

5/31/18 K. J. Knoepfel | art stakeholders meeting40

class Accumulator : public art::ReplicatedProducer {
public:
explicit Accumulator(Parameters const& p)
: ReplicatedProducer{p}

 {}

// Each module copy sees one event at a time
void produce(Event& e) override;

};

• Do not use a replicated producer is you need to use a shared resource.
• For art 3.0, replicated modules cannot produce Run and SubRun data products.

Producer virtual member functions

5/31/18 K. J. Knoepfel | art stakeholders meeting41

EDProducer SharedProducer ReplicatedProducer
void beginJob() void beginJob(Services const&) void beginJob(Services const&)

void beginRun(Run&) void beginRun(Run&, Services const&) void beginRun(Run const&, Services const&)

void beginSubRun(SubRun&) void beginSubRun(SubRun&,
Services const&)

void beginSubRun(SubRun const&,
Services const&)

void produce(Event&) void produce(Event&, Services const&) void produce(Event&, Services const&)

void endSubRun(SubRun&) void endSubRun(SubRun&,
Services const&)

void endSubRun(SubRun const&,
Services const&)

void endRun(Run&) void endRun(Run&, Services const&) void endRun(Run const&, Services const&)

void endJob() void endJob(Services const&) void endJob(Services const&)

• A produce override is required; all others are optional.

Filter virtual member functions

5/31/18 K. J. Knoepfel | art stakeholders meeting42

EDFilter SharedFilter ReplicatedFilter
void beginJob() void beginJob(Services const&) void beginJob(Services const&)

bool beginRun(Run&) void beginRun(Run&, Services const&) void beginRun(Run const&, Services const&)

bool beginSubRun(SubRun&) void beginSubRun(SubRun&,
Services const&)

void beginSubRun(SubRun const&,
Services const&)

bool filter(Event&) bool filter(Event&, Services const&) bool filter(Event&, Services const&)

bool endSubRun(SubRun&) void endSubRun(SubRun&,
Services const&)

void endSubRun(SubRun const&,
Services const&)

bool endRun(Run&) void endRun(Run&, Services const&) void endRun(Run const&, Services const&)

void endJob() void endJob(Services const&) void endJob(Services const&)

• A filter override is required; all others are optional.

Analyzer virtual member functions

5/31/18 K. J. Knoepfel | art stakeholders meeting43

• An analyze override is required; all others are optional.

EDAnalyzer SharedAnalyzer ReplicatedAnalyzer
void beginJob() void beginJob(Services const&) void beginJob(Services const&)

void beginRun(Run const&) void beginRun(Run const&,
Services const&)

void beginRun(Run const&,
Services const&)

void beginSubRun(SubRun const&) void beginSubRun(SubRun const&,
Services const&)

void beginSubRun(SubRun const&,
Services const&)

void analyze(Event const&) void analyze(Event const&,
Services const&)

void analyze(Event const&,
Services const&)

void endSubRun(SubRun const&) void endSubRun(SubRun const&,
Services const&)

void endSubRun(SubRun const&,
Services const&)

void endRun(Run const&) void endRun(Run const&,
Services const&)

void endRun(Run const&,
Services const&)

void endJob() void endJob(Services const&) void endJob(Services const&)

• Until now, users have been able to create ServiceHandles from anywhere.
• With art 3, this pattern is changing.
• The recommended pattern will be for art users to create service handles from the

passed-in Services object.

• This will eventually allow for replicated services, akin to replicated modules.
• ServiceHandles can still be constructed anywhere, but that will eventually

change.

What is the Services type?

5/31/18 K. J. Knoepfel | art stakeholders meeting44

“O art::ServiceHandle<T>{}, thou time is short.”
- Anonymous

void HitMaker::produce(Event&, Services const& services)
{
ServiceHandle<Calib> calibH = services.getHandle<Calib>();

}

Breaking changes to legacy modules and to services

5/31/18 K. J. Knoepfel | art stakeholders meeting45

• For producers and filters that call createEngine, you must explicitly call the non-
default constructor for EDProducer and EDFilter.

• This change will become necessary for all EDProducer and EDFilter modules
in a later version of art.

• All shared and replicated modules require calling similar base class constructors.

Breaking changes for legacy modules

5/31/18 K. J. Knoepfel | art stakeholders meeting46

// art 2
RNGProducer(Parameters const& p)
: dist_{createEngine(p().seed())}

{}

// art 3
RNGProducer(Parameters const& p)
: art::EDProducer{p} // must specify base class c’tor
, dist_{createEngine(p().seed())}

{}

• Through art 2, RandomNumberGenerator has had a concept of the “current”
module being processed:

• In art 3, there is no longer any “current” module. The equivalent interface is:

• If all engines are retrieved using the createEngine interface, then getEngine
can be removed, and the correct engine can be given by reference to the functions
that need it.
– Direct access to the RandomNumberGenerator service is no longer needed.

Breaking changes for services

5/31/18 K. J. Knoepfel | art stakeholders meeting47

ServiceHandle<RNG>{}->getEngine();
ServiceHandle<RNG>{}->getEngine("the_other_one");

ServiceHandle<RNG> rng{};
rng->getEngine(scheduleID, moduleLabel);
rng->getEngine(scheduleID, moduleLabel, "the_other_one");

Breaking changes for services

5/31/18 K. J. Knoepfel | art stakeholders meeting48

Signal art 2 art 3
sPreSourceEvent void() void(ScheduleContext)

sPostSourceEvent void(Event const&) void(Event const&, ScheduleContext)

sPreProcessEvent void(Event const&) void(Event const&, ScheduleContext)

sPostProcessEvent void(Event const&) void(Event const&, ScheduleContext)

sPreWriteEvent void(ModuleDescription const&) void(ModuleContext const&)

sPostWriteEvent void(ModuleDescription const&) void(ModuleContext const&)

sPreProcessPath void(string const&) void(PathContext const&)

sPostProcessPath void(string const&, HLTPathStatus const&) void(PathContext const&, HLTPathStatus const&)

sPreModule* void(ModuleDescription const&) void(ModuleContext const&)

sPostModule* void(ModuleDescription const&) void(ModuleContext const&)

• Service callback signature changes:

Breaking changes for services

5/31/18 K. J. Knoepfel | art stakeholders meeting49

• Services must be thread-safe.

• ROOT’s thread-safety flag has been enabled by art.
– Allows (e.g.) multiple ROOT files to be opened in parallel.

• ROOT’s implicit MT flag has not been enabled by art.
• All interactions art has with ROOT are serialized.

– Input-file reading
– Output-file writing
– To use TFileService, you must use a shared module that calls the appropriate
serialize function.

ROOT and MT

5/31/18 K. J. Knoepfel | art stakeholders meeting50

• Solve workflow issues first.
– You might have thread-safe

modules and services.
– If you’re relying on illegal path

configurations, you’ll run into
product dependency errors.

5/31/18 K. J. Knoepfel | art stakeholders meeting51

Guidance moving to art 3

5/31/18 K. J. Knoepfel | art stakeholders meeting52

Guidance moving to art 3
Recompile/rerun jobs with 1 schedule/1 thread

(default)

Add consumes statements to modules
(use -M program option for help)

Recompile/rerun jobs with more than 1
schedule/1 thread

Recompile/rerun jobs with 1 schedule/1 thread
and use --errorOnMissingConsumes

• Solve workflow issues first.
– You might have thread-safe

modules and services.
– If you’re relying on illegal path

configurations, you’ll run into
product dependency errors.

5/31/18 K. J. Knoepfel | art stakeholders meeting53

Guidance moving to art 3

• Solve workflow issues first.
– You might have thread-safe

modules and services.
– If you’re relying on illegal path

configurations, you’ll run into
product dependency errors.

• Determine what kind of module you need.
– Producer, filter, or analyzer?
– Do you need to create (Sub)Run products?
– Do you need to see every event?
– Do you need to call an external library that is not

thread-safe?
– Do you have mutable data members for which

operations are not thread-safe?

5/31/18 K. J. Knoepfel | art stakeholders meeting54

Guidance moving to art 3

• Solve workflow issues first.
– You might have thread-safe

modules and services.
– If you’re relying on illegal path

configurations, you’ll run into
product dependency errors.

• Determine what kind of module you need.
– Producer, filter, or analyzer?
– Do you need to create (Sub)Run products?
– Do you need to see every event?
– Do you need to call an external library that is not

thread-safe?
– Do you have mutable data members for which

operations are not thread-safe?

• We are working to provide guidance in dealing with such issues.
• Contact us.

Next steps/down the road

5/31/18 K. J. Knoepfel | art stakeholders meeting55

• Expect art-3 tag in next few days.
• Documentation!
• Will work with Mu2e to demonstrate scalability.
• The SciSoft team’s direct involvement with LArSoft means that we will help LArSoft

as well.
• If you are interested in upgrading your code to benefit from art 3, please contact us.

Next steps

5/31/18 K. J. Knoepfel | art stakeholders meeting56

• Only C++17 builds provided
• EDProducer and EDFilter default constructors will be deprecated
• Global errorOnFailureToPut parameter/program-option will be deprecated

art 3.01

5/31/18 K. J. Knoepfel | art stakeholders meeting57

• art will begin using C++17 features
• EDProducer and EDFilter default constructors will be removed
• Global errorOnFailureToPut parameter/program-option will be removed
• RandomNumberGenerator::getEngine member function will be deprecated

art 3.02

5/31/18 K. J. Knoepfel | art stakeholders meeting58

• Many other issues we have in the books that have taken a back seat
– Improve exception format
– Update stored SAM metadata
– Disentangling art from unnecessary ROOT dependencies
– etc.

art 3.xy

5/31/18 K. J. Knoepfel | art stakeholders meeting59

